前期末テスト 電子計算機 2E

2003.09.26

学籍番号 氏名

1 文字を表すコード

(1)かっこ内を適当な語句で埋めよ。(各1点)

一般に、情報を記号によって表現することを(ア)と呼び ます。表現したものを(イ)といいます。コンピューターで 文字を表す場合、文字と数字の対応があります。この対応 を示すものを(ウ)といいます。例えば、ASCIIコードのよ うなものがあります。これは、文字を表す(エ)と制御を表 す(オ)から構成されています。

(ア) <u>コード化</u> (イ) <u>コード(符号)</u> (ウ) <u>コード表</u>
 (エ) 文字コード (オ) <u>制御コード</u>

(2)以下の文字をJIS8単位コードで表現する。そのコード を16進数で書け。JIS8単位コード表は参考資料に載 せてある。(1点/文字)

kousen

kousenをコード化すると、6B6F7573656Eとなる。

2 数値を表すコード

(1)10進数の1桁をコード化したい。少なくとも何ビット必要か?。必要なビット数だけではなく、その理由も説明すること。(5点)

少なくとも 4 ビット必要である。10 進数の 1 桁は、 10 通りである。3 ビットだと 8 通り、4 ビットだと 16 通りの表現ができる。そのため、3 ビットだと不足、4 ビットあれば 10 進数の 1 桁をコード化できる。

(2)以下の10進数をBCDコードで表現しなさい(4点)

(926)₁₀

それぞれの桁を 4 桁の 2 進数で表現すると、 (9) $_{10}$ =(1001) $_{2}$, (2) $_{10}$ =(0010) $_{2}$, (6) $_{10}$ =(0110) となる。したがって、BCD コードでは

1001 0010 0110

と表現される。

(3) 以下の BCD コードを 10 進数に変換しなさい。(4 点)

BCD コード 0001 1001 1000 0111

BCD コードの各 4 ビットは、 $(0001)_2=(1)_{10}$, $(1001)_2=(9)_{10}$, $(1000)_2=(8)_{10}$, $(0111)_2=(7)_{10}$ である。このことから、問題で与えられた BCD コードは、

 $(1987)_{10}$

を示している。

(4) グレイコードの特徴を二つ述べよ。(4 点)

- ・必要なビット数は2進数でもグレイコードでも全く同じである。
- ・構成するビット数にかかわらず、1加算や1減算で変 化するビット数は1ビットのみである。
- ・グレイコードの表す0とそのビット数で表せる最大の 数も、異なるビット数は1ビットのみである。
- ビットパターンの対象性が非常に良い。

(5) 以下の10進数をグレイコード化しなさい。(4点)

(38)₁₀

まず、2進数に変換する。すると、(38)₁₀=(100110)₂ となる。これをグレイコードの規則に従い、1ビット右 ヘシフトさせたものと、ビット毎の排他的論理和(XOR) を計算する。

以上より、(38)」。はグレイコード110101に変換できた。

3. 情報の信頼性

- (1) 西暦 1950 年として、秋田からアマゾンの奥地まで、電 話回線と無線で 1M バイト程度のデジタルデータを送り たい。ノイズが大きく、通信の信頼性を上げる必要があ る。どのような方法があるか?。何でも良いから、1 つ考 えて記述せよ。(4 点)
 - ・複数回データを送り各ビットの値を多数決で決める。
 - ・通信回線を複数本つかい、各ビットの値を多数決で決める。
 - ・パリティビットを付加する。
 - ・通信機の出力を上げる。
 - ・紙に書いて、飛行機を使って手で持って行く。
 - その他、いろいろ
- (2) 10 進数を BCD コードで転送する。転送の信頼性を上げ るために、各桁の BCD コード 4 ビットの後に奇数のパリ ティビットを付加する。この条件で、以下の 10 進整数 を奇数パリティビット付 BCD コードで表現せよ。(4 点)

(629)₁₀

それぞれの桁を 4 桁の 2 進数で表現すると、 (6) $_{10}$ =(0110) $_{2}$, (2) $_{10}$ =(0010) $_{2}$, (9) $_{10}$ =(1001) となる。これに、奇数パリティのビットを付加すると

01101 00100 10011

となる。

4. ブール代数

ブール代数の公理は、参考資料に載せている。

- 4.1 証明と真理値表
- (1) ブール代数の公理のみを用いて、A·0=0を証明せよ。 証明に用いた公理は、明示すること。(5 点)

公理のみを用いた証明は、以下の通り。

$A \cdot 0 = A \cdot 0 + 0$	(公理式 3)
$=(A\cdot 0)+(A\cdot \overline{A})$	(公理式 4)
$= A \cdot (0 + \overline{A})$	(公理式 2)
$= A \cdot (\overline{A} + 0)$	(公理式1)
$= A \cdot \overline{A}$	(公理式 3)
= 0	(公理式 4)

これで、*A*·0=0が証明できた。

4.2 ブール代数の演算 演算の順序は、積が和より優先とする。
(1) ブール代数の以下の値を求めよ。(各3点)

$$1 + 1 = 1$$

 $\overline{0} \cdot \overline{0} + 0 = 1 \cdot 1 + 0 = 1$

 $\overline{\overline{0}} + \overline{\overline{0}} = \overline{0} + \overline{0} = 1 + 1 = 1$

 $\overline{1 \cdot \overline{0}} \cdot (1+0) + \overline{(1+0)} + 1 = 1$

 $\{\overline{1\cdot\overline{0}}\cdot(1+0)+\overline{(1+0)}\}\cdot 0=0$

(2) ブール代数の以下の式を簡単にせよ。(各5点)

$$A \cdot \overline{B} + A \cdot B + \overline{A} \cdot \overline{B} = A \cdot (\overline{B} + B) + \overline{A} \cdot \overline{B}$$
$$= A \cdot 1 + \overline{A} \cdot \overline{B}$$
$$= A + \overline{A} \cdot \overline{B}$$
$$= (A + \overline{A}) \cdot (A + \overline{B})$$
$$= 1 \cdot (A + \overline{B})$$
$$= A + \overline{B}$$

(2) 真理値表を用いて、ド・モルガンの法則

 $\overline{(A \cdot B)} = \overline{A} + \overline{B}$

を証明せよ。 (5 点)

真理値表は、以下のようになる。

Α	В	$A \cdot B$	$\overline{A \cdot B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

この真理値表より、 $\overline{(A \cdot B)} = \overline{A} + \overline{B}$ が証明できた。

$$A \cdot B + C + A \cdot B \cdot C + B \cdot \overline{C} = A \cdot B \cdot (1 + C) + (C + B) \cdot (C + \overline{C})$$
$$= A \cdot B + (C + B)$$
$$= (A + 1) \cdot B + C$$
$$= B + C$$

$$(\overline{A \cdot B}) \cdot (\overline{A} + B) = (\overline{A} + \overline{B}) \cdot (\overline{A} + B)$$
$$= \overline{A} \cdot \overline{A} + \overline{A} \cdot B + \overline{B} \cdot \overline{A} + \overline{B} \cdot B$$
$$= \overline{A} + \overline{A} \cdot B + \overline{A} \cdot \overline{B}$$
$$= \overline{A} \cdot (1 + B + \overline{B})$$
$$= \overline{A}$$

(3)加法の演算 A+B の真理値表を示せ。(5 点)

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

4.3 スイッチの回路

(1)図1のZ-Z間のスイッチの動作を示すブール代数の式を示せ。ただし、スイッチの動作は以下の通りとする(課題の練習 問題と同じ)。(5点)

スイッチXは、X = 1の時 on でX = 0の時 off スイッチ \overline{X} は、X = 1の時 off でX = 0の時 on

図1 スイッチの回路

スイッチの動作を示すブール代数式は、

$$Z = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + C)$$

となる。

(2)問(1)のブール代数の式を簡単にせよ。(5 点)

$$Z = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + C)$$

= { (A + \overline{B}) + (C \cdot \overline{C}) } \cdot (A + B + C)
= (A + \overline{B}) \cdot (A + B + C)
= A + \overline{B} \cdot (B + C)
= A + \overline{B} \cdot B + \overline{B} \cdot C
= A + \overline{B} \cdot C

(3)問(2)で簡単化された式の回路を示せ。(5 点)

以下の図の通り。

参考資料

JIS 8単位コード表

下位	上位4ビット															
4ビット	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	NUL	DEL	SP	0	Ø	Р	`	р				ļ	タ	"		
1	SOH	DC1	!	1	A	Q	a	q			0	P	チ	Д		
2	STX	DC2	"	2	В	R	b	r			Г	イ	ッ	メ		
3	ETX	DC3	#	3	С	S	С	S				ウ	テ	モ		
4	EOT	DC4	\$	4	D	Т	d	t			`	I	Ъ	ヤ		
5	ENQ	NAK	olo	5	Е	U	е	u			•	オ	ナ	ユ		
6	ACK	SYN	&	6	F	V	f	V	未	未	ヲ	力	11	Е	未	未
7	BEL	ETB		7	G	W	g	W	定	定	<i>P</i>	キ	ヌ	ラ	定	定
8	BS	CAN	(8	Н	Х	h	Х	義	義	イ	ク	ネ	IJ	義	義
9	ΗT	EM)	9	I	Y	i	У	-		ウ	ケ	ノ	ル		
А	LF	SUB	*	:	J	Z	j	Z	-		I	Э	ハ	レ		
В	VT	ESC	+	;	K	[k	{	-		オ	サ	Ľ	П		
С	FF	S	,	<	L	\	1		-		ヤ	シ	フ	ワ		
D	CR	GS	-	=	М]	m	}			ユ	ス	\sim	ン		
Е	SO	RS	•	>	Ν	^	n	~			Э	セ	ホ	\$		
F	SI	SU	/	?	0	_	0	DEL			ッ	ソ	7	o		

(2) ブール代数の公理

以下ブール代数の公理を示します。ここでの試験は、この公理のもと、実施するものとします。

- ・2 項演算子 +,・と、単項演算子の補元 が後で示す演算規則により定義されています。+を加法、・を乗法の 演算子と呼びます。
 ・変数は、0と1です。
 ・演算の規則は、以下の通りです。

交換法則	A + B = B + A ,	$A \cdot B = B \cdot A$	(公理式1)
分配法則	$A \cdot (B + C) = A \cdot B + A \cdot C ,$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	(公理式 2)
単位元	A + 0 = A ,	$A \cdot 1 = A$	(公理式 3)
補元	$A + \overline{A} = 1$,	$A \cdot \overline{A} = 0$	(公理式 4)