3 連立一次方程式(消去法)

3.1 連立方程式の表現方法

連立1次方程式(Linear Equations)は,次のような形をしている.

\begin{equation*}\begin{aligned}a_{11}x_1+a_{12}x_2+a_{13}x_3+\cdots+a_{1N}x_N&=...
...a_{M1}x_1+a_{M2}x_2+a_{M3}x_3+\cdots+a_{MN}x_N&=b_M \end{aligned}\end{equation*}

式(25)は行列とベクトルで書くと,式がすっきりして 考えやすくなる.書き直すと,

$\displaystyle \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ (26)

である.それぞれの行列とベクトルは,

\begin{equation*}\begin{aligned}\boldsymbol{A}&= \begin{bmatrix}a_{11} & a_{12} ...
...rix}b_1 \\ b_2 \\ b_3 \\ \vdots\\ b_N \end{bmatrix} \end{aligned}\end{equation*}

を表す.

通常,連立1次方程式(25)は

\begin{equation*}\begin{aligned}\begin{bmatrix}a_{11} & a_{12} & a_{13} & \cdots...
...rix}b_1 \\ b_2 \\ b_3 \\ \vdots\\ b_N \end{bmatrix} \end{aligned}\end{equation*}

と書き表せる.このようにすると,見通しがかなり良くなる.

3.2 ガウス・ジョルダン法の基本的な考え方

ガウス・ジョルダン(Gauss-Jordan)法というのは,連立方程式 (28)を次にように変形させて,解く方法である.

\begin{equation*}\begin{aligned}\begin{bmatrix}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 &...
... \\ b_3^\prime \\ \vdots\\ b_N^\prime \end{bmatrix} \end{aligned}\end{equation*}

この式から明らかに,求める解 $ x_{i}=b_{i}^\prime$となる.これをどうやって求めるか?. コンピューターで実際に計算する前に,人力でガウス・ジョルダン法で計算してみる.例 として,

\begin{equation*}\left\{ \begin{aligned}3x+6y+9z&=6\\ 2x+2y+3z&=1\\ 2x+2y+1z&=-1 \end{aligned} \right.\end{equation*}

をガウス・ジョルダン法で解を求める. 解くべき,方程式

$\displaystyle \begin{bmatrix}3 & 6 & 9 \\ 2 & 2 & 3 \\ 2 & 2 & 1 \end{bmatrix} ...
...rix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}9 \\ 1 \\ -1 \end{bmatrix}$    


$ \frac{1}{3}\times$1行

$\displaystyle \begin{bmatrix}1 & 2 & 3 \\ 2 & 2 & 3 \\ 2 & 2 & 1 \end{bmatrix} ...
...rix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}2 \\ 1 \\ -1 \end{bmatrix}$    


2行$ -2\times$1行

$\displaystyle \begin{bmatrix}1 & 2 & 3 \\ 0 & -2 & -3 \\ 2 & 2 & 1 \end{bmatrix...
...ix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}2 \\ -3 \\ -1 \end{bmatrix}$    


3行$ -2\times$1行

$\displaystyle \begin{bmatrix}1 & 2 & 3 \\ 0 & -2 & -3 \\ 0 & -2 & -5 \end{bmatr...
...ix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}2 \\ -3 \\ -5 \end{bmatrix}$    


$ -\frac{1}{2}\times$2行

$\displaystyle \begin{bmatrix}1 & 2 & 3 \\ 0 & 1 & \frac{3}{2} \\ 0 & -2 & -5 \e...
... x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}2 \\ \frac{3}{2} \\ -5 \end{bmatrix}$    


1行$ -2\times$2行

$\displaystyle \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} \\ 0 & -2 & -5 \e...
...x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}-1 \\ \frac{3}{2} \\ -5 \end{bmatrix}$    


3行$ +2\times$2行

$\displaystyle \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & -2 \en...
...x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}-1 \\ \frac{3}{2} \\ -2 \end{bmatrix}$    

$ -\frac{1}{2}\times$3行

$\displaystyle \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end...
... x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}-1 \\ \frac{3}{2} \\ 1 \end{bmatrix}$    

$ 2行-\frac{3}{2}\times$3行

$\displaystyle \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ...
...rix}x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix}-1 \\ 0 \\ 1 \end{bmatrix}$    


これで,ガウス・ジョルダン法による対角化の作業は完了である.これか ら, $ (x_1,x_2,x_3)=(-1,0,1)$と分かる.

3.3 ガウス・ジョルダン法のC言語の関数

ピボット選択は行わないで,逆行列も求めないのガウス・ジョルダン法で連立方程式を計 算するプログラムを示す.このプログラムの動作は,次の通りである.

	/* ========== ガウスジョルダン法の関数 =================*/
	void gauss_jordan(int n, double a[][100], double b[]){

	   int ipv, i, j;
	   double inv_pivot, temp;

	   for(ipv=1 ; ipv <= n ; ipv++){

	      /* ---- 対角成分=1(ピボット行の処理) ---- */
	      inv_pivot = 1.0/a[ipv][ipv];
	      for(j=1 ; j <= n ; j++){
	         a[ipv][j] *= inv_pivot;
	      }
	      b[ipv] *= inv_pivot;

	      /* ---- ピボット列=0(ピボット行以外の処理) ---- */
	      for(i=1 ; i<=n ; i++){
	         if(i != ipv){
	            temp = a[i][ipv];
	            for(j=1 ; j<=n ; j++){
	               a[i][j] -= temp*a[ipv][j];
	            }
	            b[i] -= temp*b[ipv];
	         }
	      }

	   }
	}

ホームページ: Yamamoto's laboratory
著者: 山本昌志
Yamamoto Masashi
平成19年11月27日


no counter